Year 11 Higher Unit 2 Knowledge Organiser – Circle Theorems and Geometry, Changing the Subject, Algebraic Fractions, Rationalising Surds, Proof, Vectors and Geometric

Circ	Circle Theorems				
1	Tangent	A straight line that	t touches the circumference of a		
		circle.			
2	Chord	A line segment connecting two points on a circle's			
		circumference.			
3	Segment	A part of a circle made when cut by a chord.			
4	Angle at the	The angle at the			
	Centre	centre of a circle			
	Theorem	is twice the	$\left(\left\langle \cdot \right\rangle \right)$		
		angle at any	20		
		point on the	¥)		
		circumference.			
5	Angles in a	The angle in a			
	Semi-circle	semi-circle is a			
	Theorem	right angle.			
			E /		
6	Angles in the	Angles in the			
	same segment	same segment			
	Theorem	are equal.			
_					
/	Cyclic	Opposite angles	a		
	Quadrilateral	of a cyclic			
		quadrilateral	$(/ . /) a + c = 180^{\circ}$		
		sum to 180 .	$b+d=180^{\circ}$		
			c		

Proof			-
8	Alternate Segment Theorem	The angle between the chord and the tangent is equal to the angle in the alternate segment.	a b b
9	Radius Bisects Chord	The radius will bisect a chord at 90°.	
10	Tangent angle Theorem	The angle between a tangent and the radius is 90°	
11	Equal Tangent Theorem	The tangents to a circle from the same point are equal in length.	
Sur	ds		
1	Surds	A number that can square or cube ro	nnot be simplified to remove a ot.
2RationaliseA process to eliminate an irratio the denominator of a fraction.3Simplify fractionsDivide the numerator and deno highest common factor.		nate an irrational number from of a fraction.	
		ator and denominator by the factor.	

Year 11 Higher Unit 2 Knowledge Organiser – Circle Theorems and Geometry, Changing the Subject, Algebraic Fractions, Rationalising Surds, Proof, Vectors and Geometric

4	Adding and	Use equivalent fractions to change each fraction to	
	subtracting	the common denominator, then add or subtract the	
	fractions	numerators, keeping the denominator the same.	
5	Multiply	Multiply the numerators, multiply the denominator	
	Fractions	and simplify.	
6	Divide	KFC – keep the first fraction the same, F – flip the	
	Fractions	second fraction, C- change the divide to a multiply.	
Pro	of		
1	Proof	A mathematical statement showing that the stated	
		assumption logically guarantees the conclusion.	
2	Consecutive	n, n+1	
	integers		
3	Even number	2n	
4	Odd number	2n + 1	
Fun	ctions		
1	Function	A special relationship where each input has a single	
		output.	
2	Inverse	A function that undoes the action of another	
	function	function.	
3	Composite	A function made of other functions, where the	
	function	output of one is the input of another.	
Vec	tors		
1	Vector	A quantity represented by an arrow with both	
		direction and magnitude.	
2	Magnitude	The length of a vector.	
3	Vector	Vectors are written using lower case letters.	
	notation		
4	Equal vectors	If two vectors have the same magnitude and	
		direction, they are equal.	
5	Parallel	Are multiples of each other.	
	vectors		
6	Negative	A parallel vector, in the opposite direction. a is	
	vectors	parallel to – a.	
7	Collinear	Vectors that are on the same line.	
	Vectors		

8	Resultant	The result from adding two or more vectors	
	vector	together.	
9	Scalar	A scalar is the number we multiply a vector by.	